Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 5 of 5
EC Number General Information Commentary Reference
Display the reaction diagram Show all sequences 2.1.1.197malfunction the DELTAbioC deletion mutant is only able to grow in biotin supplemented medium. Also supplementation with pimelic acid, and putative intermediates in the pathway, the enoyl, 3-keto and 3-hydroxy derivatives of the monomethyl ester of glutarate and the 3-keto and 3-hydroxy derivatives of the monomethyl ester of pimelate, allow growth of the mutant strain in the absence of biotin, but the 2-keto, 2-hydroxy and 4-keto derivatives, as well as monomethyl esters of C4, C6, C8, C9 and C11 dicarboxylates, do not, overview 710038
Display the reaction diagram Show all sequences 2.1.1.197metabolism the pimeloyl moiety of biotin is synthesized by a modified fatty acid synthetic pathway in which the omega-carboxyl group of a malonyl-thioester is methylated by BioC which allows recognition of this atypical substrate by the fatty acid synthetic enzymes. The malonyl-thioester methyl ester enters fatty acid synthesis as the primer and undergoes two reiterations of the fatty acid elongation cycle to give pimeloyl-acyl carrier protein methyl ester which is hydrolyzed to pimeloyl-ACP and methanol by BioH 710038
Display the reaction diagram Show all sequences 2.1.1.197physiological function deletion and complementation analysis of the biotin gene cluster. Mutants in BioC are blocked early in the biosynthetic pathway and complement mutants in bioA, bioB, and bioD 708906
Display the reaction diagram Show all sequences 2.1.1.197physiological function in biotin synthesis, the pimeloyl moiety is synthesized by a modified fatty acid synthetic pathway in which the omega-carboxyl group of a malonyl-thioester is methylated by BioC, which allows recognition of this atypical substrate by the fatty acid synthetic enzymes. The malonyl-thioester methyl ester enters fatty acid synthesis as the primer and undergoes two reiterations of the fatty acid elongation cycle to give pimeloyl-acyl carrier protein methyl ester. Supplementation of biotin-free medium with any of malonic, glutaric and pimelic acid monomethyl ester allows for acyl-ACP-synthetase-dependent growth of the bioC deletion strain 710038
Display the reaction diagram Show all sequences 2.1.1.197physiological function the role of BioC is to convert the free carboxyl group of a malonylthioester to its methyl ester by transfer of a methyl group from SAM. Methylation both cancels the charge of the carboxyl group and provides a methyl carbon to mimic the methyl ends of normal fatty acyl chains 710038
Results 1 - 5 of 5