Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 1.11.1.13 extracted from

  • Wariishi, H.; Valli, K.; Gold, M.H.
    Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators (1992), J. Biol. Chem., 267, 23688-23695.
    View publication on PubMed

Activating Compound

Activating Compound Comment Organism Structure
1,10-phenanthroline slightly activates, chelates Mn3+ Phanerodontia chrysosporium
alpha-hydroxy acid
-
Phanerodontia chrysosporium
cellobionate activates, chelates Mn3+ Phanerodontia chrysosporium
citrate activates, stabilizes Mn3+ in aqueous solution with a relatively high redox potential Phanerodontia chrysosporium
H2O2 H2O2-dependent Phanerodontia chrysosporium
L-malate activates by chelating and stabilizing Mn3+ Phanerodontia chrysosporium
L-Tartrate activates, stabilizes Mn3+ in aqueous solution with a relatively high redox potential Phanerodontia chrysosporium
Lactate activates, stabilizes Mn3+ in aqueous solution with a relatively high redox potential Phanerodontia chrysosporium
malonate activates, stabilizes Mn3+ in aqueous solution with a relatively high redox potential, most effective physiological chelator excreted by the fungus Phanerodontia chrysosporium
additional information dramatic stimulation by chelating organic acids as C2- and C3-dicarboxylic or alpha-hydroxyl acids facilitate the dissociation of Mn(III) from manganese-enzyme complex, greater activation with weakly binding chelators with a low binding constant, e.g. lactate or tartrate Phanerodontia chrysosporium
additional information succinate is no Mn3+ chelator and activator Phanerodontia chrysosporium
nitrilotriacetate slightly activates, chelates Mn3+ Phanerodontia chrysosporium
oxalate activates by chelating and stabilizing Mn3+ Phanerodontia chrysosporium
Polyglutamate slightly activates, stabilizes Mn3+ in aqueous solution with a relatively high redox potential Phanerodontia chrysosporium

Inhibitors

Inhibitors Comment Organism Structure
1,10-phenanthroline inhibits competitive Mn(III)-malonate formation Phanerodontia chrysosporium
cellobionate inhibits competitive Mn(III)-malonate formation Phanerodontia chrysosporium
additional information not inhibited by succinate Phanerodontia chrysosporium
nitrilotriacetate inhibits competitive Mn(III)-malonate formation Phanerodontia chrysosporium

Localization

Localization Comment Organism GeneOntology No. Textmining
extracellular
-
Phanerodontia chrysosporium
-
-

Molecular Weight [Da]

Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
46000
-
-
Phanerodontia chrysosporium

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
Mn2+ + H+ + H2O2 Phanerodontia chrysosporium important component of lignin degradation system Mn3+ + H2O Mn3+ is stabilized by chelating agents, malonate is the most effective physiological chelator excreted by the fungus ?

Organism

Organism UniProt Comment Textmining
Phanerodontia chrysosporium
-
-
-
Phanerodontia chrysosporium
-
MnP exists as several closely related isoenzymes
-
Phanerodontia chrysosporium
-
white rot basidomycete
-
Phanerodontia chrysosporium OGC101
-
-
-

Posttranslational Modification

Posttranslational Modification Comment Organism
glycoprotein
-
Phanerodontia chrysosporium

Purification (Commentary)

Purification (Comment) Organism
isoenzyme 1 Phanerodontia chrysosporium

Reaction

Reaction Comment Organism Reaction ID
2 Mn(II) + 2 H+ + H2O2 = 2 Mn(III) + 2 H2O ping-pong mechanism Phanerodontia chrysosporium

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O alpha-hydroxy acids, e.g. lactate, facilitate the dissociation of Mn3+ from enzyme ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes phenolic lignin model compounds ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes vanillyl alcohol ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes lignin ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O Mn3+-organic acid complexes oxidize terminal phenolic substrates in a second-order reaction ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes thiols ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O Mn3+ acts as obligatory redox coupler, oxidizing various phenols, dyes and amines ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O the diffusible product is Mn3+ ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes amines ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium Mn3+ + H2O chelation of Mn3+ by organic acids stabilizes Mn3+ at a high redox potential ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O alpha-hydroxy acids, e.g. lactate, facilitate the dissociation of Mn3+ from enzyme ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes phenolic lignin model compounds ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes vanillyl alcohol ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes lignin ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O Mn3+-organic acid complexes oxidize terminal phenolic substrates in a second-order reaction ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes thiols ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O Mn3+ acts as obligatory redox coupler, oxidizing various phenols, dyes and amines ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O the diffusible product is Mn3+ ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O Mn3+ oxidizes amines ir
Mn2+ + H+ + H2O2 free divalent Mn is the substrate, not Mn2+-complexes Phanerodontia chrysosporium Mn3+ + H2O chelation of Mn3+ by organic acids stabilizes Mn3+ at a high redox potential ir
Mn2+ + H+ + H2O2 important component of lignin degradation system Phanerodontia chrysosporium Mn3+ + H2O Mn3+ is stabilized by chelating agents, malonate is the most effective physiological chelator excreted by the fungus ?
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium OGC101 Mn3+ + H2O alpha-hydroxy acids, e.g. lactate, facilitate the dissociation of Mn3+ from enzyme ir
Mn2+ + H+ + H2O2 each catalytic cycle step is irreversible Phanerodontia chrysosporium OGC101 Mn3+ + H2O Mn3+ oxidizes phenolic lignin model compounds ir
additional information catalytic cycle with oxidized intermediates MnP compound I and II Phanerodontia chrysosporium ?
-
?
additional information large substrates have no ready access to the catalytic center Phanerodontia chrysosporium ?
-
?
additional information enzyme oxidizes 2,6-dimethoxyphenol Phanerodontia chrysosporium ?
-
?
additional information catalytic cycle with oxidized intermediates MnP compound I and II Phanerodontia chrysosporium OGC101 ?
-
?
additional information large substrates have no ready access to the catalytic center Phanerodontia chrysosporium OGC101 ?
-
?
additional information enzyme oxidizes 2,6-dimethoxyphenol Phanerodontia chrysosporium OGC101 ?
-
?

Temperature Optimum [°C]

Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
25
-
assay at Phanerodontia chrysosporium

Cofactor

Cofactor Comment Organism Structure
heme one iron protoporphyrin IX prosthetic group per enzyme molecule Phanerodontia chrysosporium
heme enzyme has a single manganese binding site near the heme Phanerodontia chrysosporium